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Abstract

The Scattering Transform is a filter that can be applied on images with local
invariance but global equivariance w.r.t. translation, scale and rotation and stability
w.r.t. deformation of an object. It has already been shown that it is beneficial to use
the Scattering Transform in combination with Deep Learning architectures in the
case of classification. Specifically, if there are low number of training data available
or the data has specific geometric properties the Scattering Transform is very useful.
This paper extends the use of the Scattering Transform from classification to object
detection by combining it with classical object detection architectures, such as the
Single Shot Detector (SSD) in two ways. The first is analogous to the classification
case, namely combining the architectures sequentially. The data is first transformed
by the Scattering Transform and the Deep Learning architecture learns based on
the resulting scattering coefficients. The second is a technique that is new to this
paper. The Scattering Transform and the Deep Learning architecture are combined in
parallel, that is the data is fed through both methods and then continuously merged
at later stages of the network. The respective methods are tested and compared to
the conventional approach on different datasets. Some of the datasets are created
specifically to test the attributes that the theoretical guarantees of the Scattering
Transform would predict, i.e. transformations such as scaling, deforming, rotating
or translating an object. Lastly, it is tested on small datasets with low amounts of
training and the timing of a forward pass is compared to other approaches. The
experiments conclude that the Scattering Transform if combined sequentially is able
to achieve similar results to the standard approach in most cases, underperforms in
noisy environments such as real life images but overperforms when small amounts
of data are available and the objects have specific geometric properties. This makes
it a useful tool for some applications.
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Zusammenfassung

Die Scattering Transformation ist ein Filter, der auf Bilder angewendet werden
kann. Sie hat die Eigenschaft lokal invariant aber global equivariant im Bezug auf
Translation, Skalierung und Rotation und stabil bezüglich Deformation zu sein. Es
wurde in früheren Arbeiten bereits gezeigt, dass diese Eigenschaft vorteilhaft für die
Klassifizierung von Objekten auf Bildern ist wenn man die Scattering Transformation
mit anderen Deep Learning Architekturen kombiniert. Besonders wenn wenig Daten-
punkte oder bestimmte geometrische Eigenschaften der Objekte vorhanden sind,
ist die Scattering Transformation erfolgreich. Diese Arbeit erweitert die Scattering
Transformation vom Bereich der Klassifizierung auf die Objekterkennung in zwei
Arten. Zunächst, analog zur Klassifizierung, werden die Scattering Transformation
und die Deep Learning Architektur sequentiell kombiniert. Das heißt, die Daten
werden erst von der Scattering Transformation verändert und deren Ergebnis dann
in die konventionelle Architekture gefüttert. Die zweite Methode ist neu und wird in
dieser Arbeit eingeführt. Dabei werden die beiden Architekturen parallel kombiniert.
Die Daten werden sowohl durch die Scattering Transformation als auch durch die
herkömmliche Deep Learning Architektur verarbeitet und dann kontinuierlich ver-
schmolzen. Die Methoden werden auf verschiedenen Datensätzen getestet und mit
den konventionellen Ansätzen verglichen. Dabei sind manche Datensätze spezifisch
für das testen von den theoretisch vorhergesagten Eigenschaften der Scattering
Transformation erschaffen worden. Zusätzlich werden auch sehr kleine Datensätze
mit wenig Trainingszeit getestet und die Zeit die der jeweilige Ansatz für das verar-
beiten eines Bilder benötigt gemessen und verglichen. Die Experimente zeigen, dass
die Scattering Transformation, im Fall der sequentiellen Kombination, gleich gute
Resultate wie die konventionellen Ansätze aufweisen. Im Fall von Daten mit viel
Hintergrundrauschen ist sie etwas schlechter, im Fall von Translation der Objekte
wesentlich besser. Wenn nur wenige Daten vorhanden sind und die Objekte spezifis-
che geometrische Eigenschaften haben ist die Scattering Transformation ebenfalls
überlegen. Damit ist sie ein sinnvolles Werkzeug für manche Anwendungen.
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1 Introduction

Many safety critical application require a visual understanding of the scene. For
example, in autonomous driving we need to know what objects are on the road. In the
task of object detection, objects are enclosed by rectangular bounding boxes and an
object detection model is tasked with predicting these given an image. Even though
the task is very easy for humans in most situations it is very hard for computers
for two main reasons: Firstly, human visual systems have evolved over millions of
years and have become very efficient at identifying important information quickly
and processing them in an efficient manner. Secondly, a big part of object detection
is incorporating prior knowledge, e.g. knowing what a car looks like in different
circumstances and having abstract semantic knowledge of objects. It is unclear
to what extend artificial systems are able to learn semantic concepts on this level
of abstraction. However, in recent years computer vision algorithms have gotten
significantly better for a number of reasons. Algorithms, especially in Deep Learning
(DL), have evolved quickly and increased the accuracy for many complicated visual
tasks drastically. Additionally, hardware has become faster and more algorithms can
be partly or entirely parallelized, making it possible to run them on GPUs, thereby
increasing their computation speed. Lastly, more and more big datasets have become
publicly available. Since many DL algorithms need many samples to train on, having
more and bigger datasets was an important pillar for their success. Many different
applications like face recognition, object tracking (e.g. the ball in a football match)
and especially semantic segmentation of traffic scenes, pedestrian and car tracking
have been impacted positively by the Deep Learning revolution. The impact of
minor changes in the effectiveness or robustness of object detection algorithms can
therefore have large scale impacts to many parts of society.

As outlined in the first paragraph many DL algorithms often rely on big datasets
to train on. These might not always exist or are very expensive to annotate. Some
diseases, for example, are rare and therefore only a few datapoints exist. Medical
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CHAPTER 1. INTRODUCTION 1

studies are often very expensive and can therefore only feature a couple of hundred
patients. Additionally, at least for visual tasks, the data needs to be annotated. This
is paid human labor that can cost a company much money. Overall it is therefore
important to find methods that reduce the number of training samples while keep-
ing the high accuracies of current state of the art methods. One possible way to
decrease the number of samples is to incorporate prior knowledge. This could be
done by using theoretical properties, like invariances or equivariances w.r.t. specific
transformations and combine them with DL. A possible way to realize this is shown
by J. Bruna and S. Mallat [BM12] with the introduction of the Scattering Transform.
The Scattering Transform is a new technique that uses wavelet operations on the
image by using a static filter that requires no training. This is important because
state of the art (SOTA) object detection algorithm use convolutional neural networks
(CNNs). Filters used in those CNNs are all trained during the training period which
costs time and energy. J. Bruna and S. Mallat [BM12] apply the Scattering Transform
to images and perform classification tasks on their outputs. They also show that the
technique is essentially equivalent to using CNNs with fixed weights for some or
all filters. The reason why the Scattering Transform has proven so successful are
the properties it provides. It is stable to deformation and equivariant to translation.
Equivariance is fulfilled for an algorithm if the output and the input are changed
in a corresponding fashion when a transformation is applied. For object detection
invariance with respect to translation is an undesirable property while equivariance
is desired. Whether an object is on the left side of the image or the right one should
be reflected in the outcome of the algorithm. In this work it is also argued that it
has desirable properties w.r.t rotation and scaling, i.e. that the scattering transform
is able to reproduce the size or rotation of an object in its output. These properties
are important for image classification but also necessary for object detection. For
example, when detecting pedestrians in real traffic situations, the object detection
algorithm must be able to identify them independent of their location, size or rotation
within the image while also indicating those properties. A pedestrian that is close
must be encoded differently from a pedestrian that is far away or otherwise the car
runs her over or breaks without necessity.
The usage of static filters provides three specific advantages beyond their transfor-
mation properties. First, the scattering transform might yield information that was
currently not available to the network and therefore increasing its accuracy. Even if
that might only be a marginal increase, it is meaningful for application. Every little
reduction of the error in object detection, especially for autonomous driving, means
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a reduction of risk of self driving cars. This is directly translated to lives being saved
in the longterm. Second, fixed weights imply no additional training time for them.
If, for example, one layer can be substituted that would reduce the length of training
and save cost and energy while creating access for people who currently do not own
multiple GPUs. Third, fixed weights cannot be overfit and are maximally general.
This might produce more robust algorithms and protect against black box attacks or
other malicious practices applied to CNNs. This, however, will not be tested within
the scope of this work but might be interesting follow-up.
This work investigates the useful properties of the scattering transform and combines
it with already established state of the art object detection algorithms. This is done
primarily in two ways. First, the techniques are combined sequentially, i.e. the SOTA
algorithms are applied only to the outputs of the scattering transform. [OBZ17]
have already shown that sequential combination is able to produce SOTA results for
image recognition. This is the attempt to extend these findings for object detection.
Second, the techniques are combined in parallel, i.e. the information of the scattering
transform are used as additional inputs for the object detection algorithm or merged
at later stages. This has not been tested yet and is the primary extension of related
work described in the following section.
The paper is separated in three main parts. A Theory chapter 2 which presents an
introduction to the techniques used in this paper and a more detailed analysis of
the Scattering Transform. It is followed by an Experiment chapter 3 which contains
a detailed overview of the experimental setups for this work. Lastly, the Results
chapter 4 analyzes the experimental results and discusses them.

1.1 Related Work

The Scattering Transform has been applied successfully in many different clas-
sification tasks. [SM13a] showed that the scattering transform is applicable to
texture discrimination. [OM14] have demonstrated that the scattering transform
also produces results similar to other SOTA algorithms for unsupervised learning.
[ACC+17] improved the classification of diseases from neuroimages considerably.
Lastly, [OBZ17] shows that substituting the first layer filters of CNN approaches
with the scattering transform yields equivalent results compared to these filters
being trained.

1.1. RELATED WORK 13





2 Theory

This chapter provides an introduction to all relevant basis for this work. If you are
already familiar with image processing you can skip to 2.3.
The first Section 2.1 gives a general overview of image processing for readers
unfamiliar with the concept. Then the Fourier transform is described in Section 2.2
as an easier example of a filter that can be applied to images and changes the format
of the their representation. In Section 2.3 the Scattering Transform is introduced
and its theoretical properties explained. It is followed by a general introduction to
convolutional neural networks (CNNs) in Section 2.4 after which hybrid networks
in the context of classification are described in Section 2.5. Lastly, object detection is
introduced in Section 2.6 and the hybrid networks in the context of object detection
conclude the chapter with Section 2.7.

2.1 2D Image Processing

Image processing describes the application of different algorithms on images with
the purpose of gaining certain information about it or changing its representation.
Most of the time images are given as two dimensional pixel arrays where each
entry denotes the intensity of that pixel. In the case of grayscale images the value is
between 0 and 255 representing black and white respectively. When handling color
images an additional 3rd dimension is added with three channels representing a
red, green, blue (rgb) encoding. Each entry, again, has values between 0 and 255
representing color intensity.
Instead of imagining an image as a flat 2D object, it can also be seen as a terrain with
surface, where the height of each coordinate is determined by the intensity of its
value. An example of this is shown in Figure 2.1.

Like every other surface, these images can now be approximated as the sum of many

1Figure taken from https://plus.maths.org/content/fourier-transforms-images
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CHAPTER 2. THEORY 2

Figure 2.1: Left: image represented as 2D flat surface. Right: image as 3D terrain with
uneven surface. 1

different two dimensional sine waves. 2D sine waves are defined as in Equation 2.1,
where a is the amplitude and h,k are the frequencies in x and y direction respectively.

f = asin(h ·x + k · y) (2.1)

To give an example of how this approximation looks like, Figure 2.2 shows examples
of three different two dimensional sine waves. It can be observed that higher
amplitudes dominate the resulting wave, i.e. determine the direction of the wave
stronger than the smaller amplitudes.

Figure 2.2: Left: sin(x)+sin(y). Middle: 5sin(x)+sin(y). Right: sin(x)+5sin(y). On the middle
and right images the higher amplitudes of 5 dominate the resulting wave. 2

2.2 Fourier Transformation

To get a better understanding of the Scattering Transform an explanation of a simpler
and more commonly used transform is briefly discussed first in form of the Fourier
Transform (FT). A FT decomposes a signal into the frequencies that make it up.

2Figure taken from https://plus.maths.org/content/fourier-transforms-images
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2 CHAPTER 2. THEORY

2.2.1 One Dimensional FT

In the case of one dimensional signals, such as an audio signal, the decomposition
are the coefficients of the sine waves representing the signal. A good example of this
would be the decomposition of an audio signal. The FT is defined by Equation 2.2
for any real number ω and any integrable function f :R→ C.

f̃ (ω) =

∫
∞

−∞

f (x) e−2πixωdx (2.2)

To get back to the Fourier domain when given a frequency, the inverse Fourier
transform defined in Equation 2.3 is used.

f (x) =

∫
∞

−∞

f̃ (ω) e2πixωdω (2.3)

When using discrete instead of continuous functions, the integrals in the definitions
become sums. Then the definition of the forward FT is given in Equation 2.4 and in
Equation 2.5 for the inverse FT.

f̃ (ω) =

n∑
x=1

f (x) e−2πixω (2.4)

f (x) =

n∑
x=1

f̃ (ω) e2πixω (2.5)

2.2.2 Two Dimensional FT

Since images are two dimensional objects the Fourier transform needs to be extended.
The Fourier transform then becomes a complex function of two or more real
frequency variables ω1,ω2. Since images are finite objects the discrete version of the
two dimensional Fourier transform is given in equation 2.6 for the forward case and
in equation 2.7 for the inverse case.

2.2. FOURIER TRANSFORMATION 17
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f̃ (ω1,ω2) =

n∑
x=1

m∑
y=1

f (x, y) e−2πi(ω1·x+ω2·y) (2.6)

f (x, y) =

n∑
x=1

m∑
y=1

f̃ (ω1,ω2) e2πi(ω1·x+ω2·y) (2.7)

2.3 Scattering Transform

This section explains the details of the Scattering Transform. It starts by explaining
the basic functionality and adds complexity in every subsection. Subsection 2.3.1
describes a combination of multiple wavelet filters called filter bank. Subsection
2.3.2 shows how wavelets can be combined sequentially. The scattering networks
described in Subsection 2.3.3 are a parallel and sequential combination of the
wavelet filters that is also later used in the experiments. The section is concluded
by a presentation and discussion of the properties of the Scattering Transform in
Subsection 2.3.4.
A transformation from the time to the frequency domain cannot only be performed
by using the sine but in principal with any given periodic function. Wavelets are
wave-like oscillation with an amplitude that begin and end at zero. In most use cases
wavelets are specifically crafted to have certain properties. The Scattering Transform
is based on a Morlet wavelet, which is defined in equation 2.8.

ψ(u) = C1(eiu.ξ
−C2)e

−|u|2

2σ2 (2.8)

where C1 and C2 are constants. C2 is chosen such that
∫
ψ(u)du = 0, u.ξ denotes the

inner product of u and ξ, and |u|2 is the norm in R2. Figure 2.3 shows the real and
complex part of a Morlet wavelet.

Similar to the Fourier transform the Morlet wavelet can also be extended to multiple
dimensions. Figure 2.4 shows the 2 dimensional Morlet wavelet with parameters
σ = 0.85 and ξ = 3π

4 . These parameters are taken from [BM12]. No additional fine
tuning w.r.t. to these parameters is done in this paper.

3Figure taken from https://pdfs.semanticscholar.org/c354/
c467d126e05f63c43b5ab2af9d0c652dfe3e.pdf

18 2.3. SCATTERING TRANSFORM

https://pdfs.semanticscholar.org/c354/c467d126e05f63c43b5ab2af9d0c652dfe3e.pdf
https://pdfs.semanticscholar.org/c354/c467d126e05f63c43b5ab2af9d0c652dfe3e.pdf


2 CHAPTER 2. THEORY

Figure 2.3: Real and Complex part of Morlet wavelet in 1D. 3

Figure 2.4: Complex morlet wavelet. a) Real part of ψ. b) Imaginary part of ψ. c) Fourier
modulus |ψ̂|. Image taken from [BM12].

2.3.1 Filter Bank

A wavelet transform filters x using a family of wavelets: {x?ψλ(u)}λ. It is computed
with a filter bank of dilated and rotated wavelets having no orthogonality property.
The filter bank has four parameters: M,N, J,L where M,N stand for the initial spatial
size of the input, J is the scaling parameter and L is the number of angles used for the
wavelet transform. J determines the size of the downsampling for the filters. The new
output is downsampled by 22·J, i.e. An input image of size (32,32) is downsampled
by J = 1 to be of size (16,16) or by J = 2 to be of size (8,8). It is important to note that
the filter bank is just an accumulation of filters and is independent of the data.

2.3. SCATTERING TRANSFORM 19
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A visualization of the filter bank used in this work can be found in figure 2.5. The
filters are shown for J = 0,1,2 and L = 8 different angles. The red blurry dot in the
bottom is the result of a Gabor filter which is a sinosoidal wave multiplied with a
Gaussian function. The Gabor Filter is used as a low-pass filter.

Figure 2.5: Visualization of the filter bank. The j = 0,1,2 describe the different downsample
sizes. The θ = 0, ...,7 describe the different angles. For these images N,M =
32,L = 8, J = 3. The contrast corresponds to the amplitude and the color to the
phase. The blurry red dot in the bottom is the corresponding low-pass filter.

2.3.2 Scattering Paths

To compute more and higher order scattering coefficients we iteratively apply the
scattering transform. Let U[λ]x = |x?ψλ|. A sequence p = (λ1,λ2, ...λm) defines a path,
which is the ordered product:

U[p]x = U[λm]...U[λ2]U[λ1] = |||x?ψλ1 |?ψλ2 |...|?ψλm |.

A scattering transform along the path p is defined as an integral, normalized by the
response of a Dirac:

S̄x(p) = µ−1
p

∫
U[p]x(u)du

20 2.3. SCATTERING TRANSFORM
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with µp =
∫

U[p]δ(u)du. From this it follows that each scattering coefficient S̄x(p) is
invariant to a translation of x. The scattering is Lipschitz continuous to deformations
as opposed to the Fourier transform modulus.

2.3.3 Scattering Networks

Scattering Networks are the result of all previously explained concepts. There are m
layers in the network, where every m describes the length of the scattering paths
in that layer. m is also called order because it describes the number of consecutive
scattering applications in that path. A scattering network is a tree that starts with
a single root node in layer m = 0 and branches out for every further layer with
branching factor L. The scattering network is a collection of filters through which
data can be forwarded as in any other computational graph. In contrast to most
conventional CNN architectures (some use skip connections) the output is not only
taken from the last layer, but from every single node in that network. An example of
a scattering network with L = 4 and m = 2 is shown in figure 2.6. The nodes describe
the filters that are independent of the data, i.e. U[λ1] f for the first layer. The blue
arrows indicate the outputs at every node, i.e. the scattering coefficients that result
from applying this particular scattering path to data for example SJ[λ1] f for a node
in the first layer. The root node UJ[θ] f = f ?φJ is the low-pass filter which is a Gabor
filter in this case.
In [BM12] it is shown that using more than m = 2 produces a lot of unnecessary
computation because most of the information from data is already captured in the
second-order scattering coefficients. For practical purposes this paper from now
on assumes that networks are at maximum m = 2 layers deep and in this paper for
some applications m = 1 only. The total number of filters k1,k2 and therefore also the
total number of outputs per datapoint are shown in Equation 2.9 for m = 1 and in
Equation 2.10 for m = 2.

k1 = i · (1 + JL) (2.9)

k2 = i · (1 + JL +
1
2

J(J−1)L2) (2.10)

The variable i denotes the number of input channels of the input data which is 3
for most applications since RGB images are used. In the case of RGB images the
scattering transformation is applied for every channel separately. Figure 2.6 is only
showing a network for one abstract J. Given that J describes the factor by which the
outputs are downsampled it also has to be factored in the Equations 2.9 and 2.10.

2.3. SCATTERING TRANSFORM 21
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Lastly, it should be noted that the output of the scattering network all have the same
downsampled size determined by J even if the filters have different sizes. This is
achieved by subsampling the current scattering coefficients in the Fourier domain
such that the output size is the desired one. To make this more clear an example is
provided: A scattering network with N,M = 32; J = 2;L = 8 is initialized. The network
is applied on an RGB image. Therefore there are 3 · (1 + 2 ·8) = 51 outputs of size (8,8)
because of the downsampling factor J = 2.

Figure 2.6: Representation of a scattering network. Each filter is described by its path, e.g.
U[λ1] f . Every blue arrow describes an output at the particular filter. The m =
0,1,2 describe the number of iterative applications of the scattering transform.
L = 4 is the branching factor in the network also known as the number of angles
for the filter.

The filters are applied in a convolutional manner, i.e. every point in the feature
map is the result of the filter applied on a particular patch in the previous image or
feature map. In comparison to the way convolution is described in section 2.4 the
convolution is implemented through the Fourier Transform. By applying the inverse
Fourier transform F −1, we can write:

f ∗ g = F −1
{
F { f } ·F {g}

}
Instead of sliding a filter over the image, both the filter and the image are transformed
in Fourier space and multiplied point-wise. The result of the point-wise multiplication
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is transformed back through the inverse Fourier Transform. The feature maps have
a meaning that is understandable in human terms and can be analyzed visually. For
two different images the 0th order, first order and second order scattering coefficients
are visualized in Figure 2.7 and 2.8. Subfigure a) shows the original image. Subfigures
b),c) and d) show the 0th to second order scattering coefficients respectively. The
number of filters grows as described in Equation 2.9 and Equation 2.10. Through this
example it is very clear that the filters primarily encode geometric information, i.e.
edges and corners of the object in the image. To get an impression of the scattering
coefficients in a more realistic setting, an additional image is analyzed in figure 2.8.
As one can see in the cat image, the scattering coefficients are also interpretable
in terms of geometric properties of the cat. Additional examples are shown in the
appendix. A comparison of the images in the appendix and in this section suggests
that the scattering transform is equivariant w.r.t transformation. This means that the
translation of an object in the image corresponds to a similar or at least proportional
translation in the feature map. This is a desirable property for object detection and
is also in aligment with the description of the following Subsection 2.3.4 when the
distinction between local invariance and global equivariance is made.

2.3.4 Properties of the Scattering Transform

In this subsection the properties of the scattering transform as used in this work are
layed out and the reasons for the properties are pointed out but not proven. For a
more detailed explanation and references to proofs we refer the reader to the original
paper [BM12].
A wavelet is a localized waveform and therefore stable to deformations. This is an
upgrade to the sinusoidal waves of the Fourier transform which do not have this
property. Before the properties can be explained the concepts of invariance and
equivariance are defined. A function f is invariant w.r.t. to a transformation T if the
transformation does not change the outcome of the function when applied to the
input x as described in Equation 2.11.

f (Tx) = f (x) (2.11)

A function f is equivariant w.r.t. to a transformation T if the outcome of the function
when applied to the input is transformed in a similar fashion as the input as shown
in Equation 2.12. Equivariance with respect to translation, for example, means the
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(a) (b)

(c) (d)

Figure 2.7: Image taken from a toy dataset created for this work. a) Original image; b)
0th order scattering coefficients, i.e. a Gaussian low-pass filter; c) First order
scattering coefficients; d) Second order scattering coefficients

feature map of the filter reflects that translation in a proportional manner.

f (Tx) = T f (x) (2.12)

A wavelet transform computes convolutions with wavelets. It is thus translation
equivariant not invariant. To achieve local invariance a non-linearity must be added.
The L1(R2) norm is chosen as the non-linearity. The invariance also only holds
locally for displacements c with |c| << 2J. This means that during the reduction to
smaller feature maps the scattering transform does not lose any information on
the object but still keeps global equivariance. Compared to the Fourier transform
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(a) (b)

(c) (d)

Figure 2.8: Image taken from the VOC dataset. a) Original image; b) 0th order scattering
coefficients, i.e. a Gaussian low-pass filter; c) First order scattering coefficients;
d) Second order scattering coefficients

modulus, which is also invariant to deformations, the scattering transform is Lipschitz
continuous to deformations, i.e. the change in the scattering coefficients is bounded
and determined by the change in the deformed object. Deformation stability of the
Scattering Transform is obtained with localized wavelet filters which separate the
image variations at multiple scales and orientations. L. Sifre and S. Mallat [SM13b]
show that the Scattering Transform also naturally fulfills global equivariance while
having local invariance w.r.t. scale and rotation because of the Morlet wavelet.
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Discussion of the Properties

In this work the scattering transform is applied to object detection. In previous
works the scattering transform has mainly been applied to image classification. In
the following a short distinction between the two tasks is presented. For image
classification invariance w.r.t. rotation, translation, scale and deformation are all
positive attributes because every image corresponds to exactly one category. In
the context of object detection invariances can be problematic. If a transform is
applied to an object the object detection algorithm should still be able to identify the
object correctly thereby showing invariance but also produce a new and adapted
bounding box thereby showing equivariance. Since the Scattering Transform shows
local invariance and global equivariance the problems of invariance are not given
as long as J is sufficiently small, i.e. the image is not reduced in size too much. The
empirical results, i.e. Figures 2.7, 2.8 and appendix suggest translation equivariance
instead of invariance. Equivariance is a desirable property for object detection and
therefore not problematic. Similar results are also seen for scale and rotation as
shown in the appendix or argued by [SM13b].
Given this theoretical insight this work proposes a specific kind of hybrid network
which includes information from both a conventional CNN and the scattering
networks which is described in Subsection 2.7.2.

2.4 Convolutional Neural Networks

For most image-related tasks, i.e. classification or object detection, a picture is
used as a collection of pixels. However, not all pixels are equally important and
subsets of the entire image form meaningfully connected subcollections. This
might be a face in a photo of a family gathering. For humans the ability to detect
these features and contextualize them comes naturally, for computers it does not.
Therefore convolutional neural networks (CNNs) [LBD+89] are used. Convolutions
are essentially just the application of filters on an image. The filter is applied at every
possible location in the image, as described in Figure 2.9. In formulas the application
of a filter through convolution will be denoted with the convolution operator ?.

In CNNs there are multiple stages of filters in sequential order and multiple filters

4Figure taken from and animated version at https://towardsdatascience.com/
types-of-convolutions-in-deep-learning-717013397f4d
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Figure 2.9: 3x3 convolution on 5x5 image. Resulting image is also 5x5 due to the padding
of size 1 added to the original image. 4

per layer. That means at every stage of the network different filters are applied on
the outcome of an earlier step. The filters are assumed to learn different features
of the images. The later the stage, the higher the level of complexity of the feature
to be learned. That means, that an early filter might learn simple attributes such
as edges or colors while a later filter might learn more complex features such as
an eye or a nose and the very last filters even more complex semantic objects such
as a face. The weights are trained by backpropagation using stochastic gradient
descent. They determine what each individual filter does. This means that every
filter that is applied on a given layer learns its specific function such that overall the
best accuracy can be achieved.

As just explained in conventional CNNs the filters are trained. However, there
are some approaches that use static filters. Static filters essentially encode prior
knowledge which is important for two key reasons. First, it lessens the dependency
on big labeled datasets since the filters already contain some information and do not
need to adapt. Second, specific theoretical guarantees can be made for some filters.
A filter can be invariant or equivariant w.r.t. a specific transformation. Equivariance
is a desirable property for object detection while invariance is undesirable. The
bounding boxes for an image with one object and another image with the same
but transformed object should not be similar but also translated accordingly. The
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Scattering Transform is one approach that ensures equivariance/invariance w.r.t.
specific transformations as explained in Subsection 2.3.

2.5 Hybrid Networks for Classification

In [OBZ17] E. Oyallon et al. construct a hybrid of the Scattering Transform and
classic classification architectures. They remove the first couple of layers of a ResNet
[HZRS15] architecture and substitute it with a scattering network such that the
image is first transformed by the Scattering Transform and the ResNet is then
trained on the scattering coefficients. Their results show two important insights.
First, the accuracies on most classification tasks such as MNIST are as good as when
just training a ResNet architecture. Second, when using less datapoints or images
with distortions the hybrid network outperforms the standard architecture. This
paper attempts to extend these results on object detection which is explained in the
following sections.

2.6 Object Detection

Object detection is a task within image processing where objects on a given image
are supposed to be detected. These objects can be anything from buildings over cars
to humans. The images are already annotated for training, i.e. a rectangle (or other
representation) that approximates the object best is already placed over the picture
with the associated class attached. An example of such an annotated image can be
found in Figure 2.10.

Figure 2.10: An example of a annotated image taken from the Kitti dataset. There are seven
objects of four classes visible: cyclist, car, pedestrian and dontcare.
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Many methods have been explored to increase the accuracy of object detection
ranging from sliding window approaches over hand crafted feature extraction to
artificial neural networks. All current state of the art results for object detection are
achieved by using Convolutional Neural Networks (CNN) in different ways. Broadly
speaking object detection networks can be distinguished in one-stage and two-stage
detectors. One-stage detectors are fully convolutional networks, e.g. YOLO [RF18] or
SSD [LAE+15]. Two stage object detection networks have a region proposal method
as their first part. This method can either be selective search as in the case of RCNN
[GDDM13] or a region proposal network as in FastRCNN [Gir15] or FasterRCNN
[RHGS15]. The second stage then consists of classifying the objects in the proposed
regions and finding the most fitting bounding boxes. In this stage all previously
named network types use a CNN for the classification. Therefore this work also uses
a CNN as the backbone of the object detection. The object detection network that is
used for this paper is discussed in the following subsection.

2.6.1 Single Shot Multibox Detector (SSD)

The Single Shot Detector (SSD) is a fully convolutional object detection network
[LAE+15]. The SSD consists of two main components: an adapted version of a
standard CNN used in classification tasks, i.e. VGG or ResNet, and extra feature
layers that transform the features from the first part to meaningful information w.r.t.
the final classes and their location. The final detections are then pushed through a
Non-Maximum Suppression (NMS) operation to put a higher weight on probably
correct detections and a lower weight on probably incorrect detections. Additionally,
NMS also merges all detections belonging to the same class and only keeps the
bounding boxes with highest confidence for a given region thereby removing
redundant encodings of the same object. A detailed graphical description of the SSD
and VGG16 can be found in Figure 2.12. In the upper picture an overview of the
SSD architecture can be seen. The data is piped through the adapted classification
architecture, in this case VGG16. However, instead of connecting the output with a
fully connected layer to the output layer it is now piped through the extra feature
layers. Those are responsible for anchor boxes on the image with different feature
sizes and aspect ratios. Anchor boxes are predefined boxes offered to the network
such that it only has to choose the best fitting one instead of suggesting its own box
proposals. The concept of anchor boxes and feature maps is visualized in Figure 2.11.
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Figure 2.11: A graphical explanation of the feature maps and anchor boxes. The grid shows
the feature map. The boxes with dotted contours describe different possible
anchor boxes for one cell of the grid. Image from the original SSD paper
[LAE+15].

Some of the combinations of feature sizes and aspect ratios will match an object
on the image. The probability that an anchor box represents an object is evaluated
by the confidence layers. There are a total of 8732 detections per image and class
as a consequence of all convolutions described in Figure 2.12. All detections that
are bigger than a certain threshold are the output of the network. The VGG is just
represented as a big box in the first image but a more detailed view is represented
in the second. The main idea behind the VGG is to pipe the data through multiple
convolutional layers that have decreasing feature map size but increasing number
of channels. As already described in Section 2.4 the representations are increasingly
large with increasing layer number. The reduction of the feature map size is done by
a 2x2 max pooling operation which is a method to reduce the size of representations
while keeping the most important information. For a theoretical introduction to max
pooling or a general overview of CNNs see Schmidhubers overview paper [Sch15].

In its original paper [LAE+15] the SSD performed very well on the PASCAL VOC2007
benchmark set, however, on most other object detection tasks, i.e. Kitti [GLSU13], it
is outperformed by fast R-CNN [Gir15] or faster R-CNN [RHGS15] two other archi-
tectures for object detection. In this work SSD is used instead of other architectures
because it is faster than the two-stage networks. Speed is an important property
when the network is considered for online applications. Given that the task of this
work is only to test whether the scattering transform can be used effectively to
perform object detection, relative measures to the standard architecture are sufficient.
However, there is no principal reason not to combine the scattering transform in
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(a)

(b)

Figure 2.12: Figure of the SSD network. a) Entire SSD with focus on extra feature layers
and Non-Maximum Suppression. b) VGG16 in more detail. Explanations for
the figures are in the respective section. The tensors NxNxC stand for the
feature map size and number of channels, i.e. conv_2_1 has a feature map of
150x150 with 128 parallel channels. The red boxes describe 2x2 max-pooling
operations.

the same way it is done in this paper with other object detection architectures if
those are using convolutional layers thereby making all of this work transferable to
two-stage detection networks. This might be a suggestion for future work but is not
part of this paper.
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2.7 Hybrid Networks for Object Detection

Hybrid networks in the context of this paper describe a combination of conventional
object detection network architectures and the scattering transform. Note that this is
similar to the hybrid networks as originally proposed by [OBZ17] but extended to
object detection. Two possible ways to combine the two techniques are described
in the following. Subsection 2.7.1 describes the extension of the hybrid networks
to object detection. Subsection 2.7.2 shows a new technique combining the two
methods in a different way.

2.7.1 Sequential Hybrid Networks

Sequential hybrid networks describe an architecture in which the first couple of
filters in a conventional object detection network have been replaced by the scattering
transform. A general overview of the sequential architecture can be found in Figure
2.13. The details of the implementation are found in Figure 3.9 in the following
chapter.

Figure 2.13: General overview of the sequential scattering architecture.

2.7.2 Parallel Hybrid Networks

Another possibility to combine the two networks is through concatenation during the
forward pipeline. The intention here is to combine the strength of both techniques:
the flexibility of the CNN with the robustness of the scattering transform. A general
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overview of the parallel architecture can be found in Figure 2.14 The details of the
implementation are found in Figure 3.10 in the following chapter. Independent of
the specific implementation it is important to point out that the later merges should
contain more abstract knowledge than the earlier ones. This is achieved by using the
first order coefficients for the first merge and the second order coefficients for the
second.

Figure 2.14: General overview of the parallel scattering architecture.

2.7. HYBRID NETWORKS FOR OBJECT DETECTION 33





3 Experiments

Multiple experiments are conducted in this paper. They test the performance of
different scattering architectures, i.e. sequential and parallel, and compare them to
the standard architecture on different datasets.
Section 3.1 gives a general overview of the datasets used in this paper. Section 3.2
shows what kind of setup was used for the architectures to conduct the experiments.
The reproduction experiments of the classification results on different datasets is set
up in Section 3.3 where the main experiments for object detection are described in
Section 3.4.

3.1 Datasets

The experiments in this work were conducted on multiple datasets. Two of them are
known and openly available datasets for benchmarking purposes, namely PASCAL
VOC and KITTI. The other five datasets used were specifically created for this work
to test the geometric properties of the scattering transform for object detection tasks.

3.1.1 PASCAL VOC

The PASCAL Visual Object Classes dataset is a common benchmark for object
detection tasks [EEVG+15]. This work uses a combination of VOC images from 2007
and 2012 totaling 27088 images. They are split in test and training set such that the
training set contains around 16k images. There are 20 different classes in the dataset
that are frequently seen in a person’s daily life ranging from aeroplane over bicycle
to TV monitor. Most images are taken such that the object is centered and only one
object is seen. In some rare instances two or more objects are seen in the same image,
i.e. when a person is riding a horse or two cats are playing together. To get a feeling
for the dataset Figure 3.1 shows three sample images from PASCAL VOC.
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(a) (b) (c)

Figure 3.1: Three samples from the PASCAL VOC dataset showing a dog, bus and TV
monitor from left to right.

3.1.2 KITTI

The KITTI Vision dataset is specifically created for object detection of traffic scenes
[GLSU13]. It has four classes: cars, cyclists, pedestrians and miscellaneous. The
entire dataset has around 8k images and is split in around 6k training and 2k test
images for this work. The scenes visible in the KITTI dataset contain multiple objects,
i.e. multiple cars, cyclists and pedestrians in the same image and are therefore
significantly harder to detect compared to PASCAL VOC. The original images are
taken with aspect ratio 3:1. The SSD setup used in this paper uses an input size of 300
by 300 thereby reshaping the image and most objects in it which could pose problems.
A SSD with input size of 1000 by 300 was setup but did not yield better results (see
6.1 for the description of a negative result). Four traffic scenes are depicted in Figure
3.2.

(a) (b)

(c) (d)

Figure 3.2: Four samples from the KITTI dataset.
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3.1.3 Toy Data

To test the quality of the networks on easier datasets with simple geometric properties
a toy data set was constructed. Every image contains three objects that can also be
overlayed. Every object has one of three randomly chosen colors. The objects are
either a triangle, a rectangle or an ellipse. In total 6k such images are contained in
the training set and 2k in the test set. Four samples can be found in Figure 3.3

(a) (b) (c) (d)

Figure 3.3: Four samples from the toy data set.

3.1.4 Test Invariances Toy Data

To test the invariances individually four additional datasets have been created. All of
them contain only one object per image. They are all created in the same procedure:
A base image with a randomly chosen object is created and put in the training set.
Six further images are derived from the base image w.r.t. the particular invariance
and put into the test set. This is done 1000 times per dataset resulting in 1k training
and 6k test images per invariance. All objects have one of three randomly chosen
colors such that the network does not learn to predict based on the color. The specific
procedures are described in the following and samples are provided.

Scale

A base image is created as explained above. Six further images are created by scaling
the object with factors from 0.5 to 1.5 of the original size. The objects are triangles,
rectangles and ellipses. Samples can be seen in Figure 3.4.
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(a) (b) (c) (d)

Figure 3.4: Four samples from the scale toy data set. a) is the base image; b) -d) are the
scaled versions

Rotation

A base image is created as explained above. Ten further images are created by
rotating the object around its own center with equal angle sizes. The objects are
triangles, rectangles and heptagons. Samples can be seen in Figure 3.5.

(a) (b) (c) (d)

Figure 3.5: Four samples from the rotation toy data set. a) is the base image; b) -d) are the
rotated versions

Deformation

A base image is created as explained above. Ten further images are created by taking
one point of the object and adding noise to it. The noise is uniformly distributed and
capped such that it can maximally add or subtract 20% of the original object size to
the point. The objects are triangles, rectangles and heptagons. Samples can be seen
in Figure 3.6.
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(a) (b) (c) (d)

Figure 3.6: Four samples from the deformation toy data set. a) is the base image; b) -d) are
the deformed versions

Translation

A base image is created as explained above. Ten further images are created by
changing the location in the image randomly. The objects are triangles, rectangles
and ellipses. Samples can be seen in Figure 3.7.

(a) (b) (c) (d)

Figure 3.7: Four samples from the translation toy data set. a) is the base image; b) -d) are
the translated versions

3.1.5 Classification Toy Data

To reproduce the results of [OBZ17] regarding classification a network is trained on
a toy dataset created for classification. Every image contains exactly one triangle,
ellipse or rectangle in different sizes and colors.The data from the object detection
toy data cannot be reused because they contain three objects per image instead of
just one. Samples of the images are shown in Figure 3.8.
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(a) (b) (c) (d)

Figure 3.8: Four samples from the classification toy data set.

3.2 Setup

In the following section technical specificities are explained to further understand
and potentially reproduce the findings of this work. The code for the experiments
has been implemented in Python3, and PyTorch [PGC+17] was used as a framework
for the neural networks. The code can also be accessed at https://github.com/
mariushobbhahn/CompSci_Bachelor_201819.

3.2.1 Augmentations, Batchnorm, Multibox Loss, Optimizer

Since neural networks have become so popular many pre-processing steps and
techniques applied during the forward pass have become successful and standard.
In this subsection is a description of the different approaches that were chosen for
the experiments. In all cases the images are reshaped to fit the SSD setup to have a
size of 300x300 pixels with three color channels. A data augmentation preprocessing
step consists of photometric distortions, i.e. random contrast and saturation or
changing the color representation of the image, random sample cropping and
random mirroring of the data. The effectiveness of these augmentations is tested in
the baseline experiments.
When the data has entered the network some other techniques can be applied
during the forward pass. Using batch norm [IS15] is one popular tool. It consists
of standardizing every batch to be distributed according to a Gaussian with mean
0 and standard deviation 1. This is done to speed up the training by preventing
internal covariance shifts in the forward pass. The effectiveness of this technique is
also tested in the baseline experiments.
To evaluate the quality of the proposals a metric is needed. The SSD works with the
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Multibox Loss. It is defined as

L(x,c, l, g) =
1
N

(Lconf(x,c) +αLloc(x, l, g)) (3.1)

where xp
ij = {1,0} is an indicator for matching the i-th default box to the j-th ground

truth box of category p, c are the class confidences, l are the predicted box and
g the ground truth box parameters. Overall the multibox loss is a weighted sum
of the localization loss Lloc which is a smooth L1-loss between the predicted and
ground truth box, and the confidence loss Lconf which is a softmax loss over multiple
classes. The technical details can be found in the original SSD paper [LAE+15]. The
multibox loss combines the regression task of finding the correct bounding boxes
and classification task of finding the correct objects for those boxes.
The training objective is optimized using Stochastic Gradient Descent (SGD). Other
optimizers such as Adam were tried but did not change the result in any way.

3.2.2 Hyperparameters

SSD has many hyperparameters over which can be optimized. A full list can be
found in Table 3.1.

For some hyperparameters context and explanation is given in the following.
The first hyperparameters: momentum, weight decay gamma, learning rate, etc. are
related to the optimizer itself. Gamma describes the amount by which the learning
rate is adapted at every learning rate step. The learning rate is different when the
batch norm is used as well, since the standardization allows for higher learning
rates due to faster convergence. The learning rate steps describe at which epochs
during the training the learning rate should be reduced further. The datasets have
different number of iterations due to their complexity. A network just needs more
time to find patterns in street scenes than in triangles in front of a white background.
The second part describes hyperparameters that are related to the object detection
part of the network. The list called feature maps describes the sizes of the feature
maps in the extra feature layers of the SSD network. They can also be seen in Figure
2.12. The feature maps parameter is a list of feature map sizes used for the object
detection. The bigger the size of the feature map the smaller are the objects that can
be detected. A graphical explanation for the functionality of the feature map and
anchor boxes can be found in Figure 2.11 shown in the SSD Subsection. The steps
parameter is used to determine the center points for the anchors on a given feature
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Table 3.1: Hyperparameters for the SSD. Explanations for some parameters are given in the
accompanying text. The upper part of the list is concerned with the optimization,
the lower part with the setup for the SSD.

Parameter respective value(s)
Momentum 0.9
Weight decay 5e-4
Gamma (SGD) 0.1
learning rate (lr) 1e-3
lr batch norm 3e-3
lr steps (VOC) (80000, 100000, 120000)
max iter (VOC) 125000
lr steps (Kitti) (150000, 175000, 185000)
max iter (Kitti) 200000
lr steps (Toy Data) (60000, 65000, 70000)
max iter (Toy Data) 75000
feature maps [38, 19, 10, 5, 3, 1]
steps [8, 16, 32, 64, 100, 300]
s_sizes [30, 60, 111, 162, 213, 264, 315]
aspect ratios [0.33, 0.5, 1, 2, 3]
multibox [4, 6, 6, 6, 4, 4]

map cell. To make sure all cells have an anchor for each detection the following
equation is approximately fulfilled for all extra layers: feature_maps[i] · steps [i] ≈
300. The 300 is chosen because it is the size of an image in x- and y-direction. S_sizes
is a scaling factor for the respective boxes at different stages of the detection forward
pass. Aspect ratios describes the relative size in x- and y-direction of a given box, i.e.
a box with aspect ratio 0.5 is twice as high as wide. Multibox describes the number
of boxes with different aspect ratios per layer. A more detailed explanation can be
found in the original SSD paper [LAE+15]. All values of those parameters are also
taken from the original implementation. In the appendix in section 6.1 is a list of
parameters and other methods that were tried during the making of this work but
did not yield positive results such that future related research does not have to be a
waste of valuable time.

3.3 Classification

Classification is a necessary precondition of object detection. To reproduce the results
of [OBZ17] for the classification toy data set a small network is set up. The architecture
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is a two step procedure: first the data is channeled through a scattering transform
with N,M = 128, J = 2,m = 1. In the second step the results of the scattering transform
are piped through a ResNet [HZRS15]. Other architectures such as the VGG could
also be used for the classification but the ResNet showed faster convergence for this
experiment.

3.4 Object Detection

In the following section the main experiments of the paper are described. Subsec-
tion 3.4.1 describes the experiments to determine the baseline results and hyper-
parametrization for the standard SSD approach. Subsection 3.4.2 and 3.4.3 give a
detailed explanation of the setup for the sequential and parallel scattering exper-
iments. Lastly, Subsection 3.4.4 explain the experimental setup for small datasets
and short training times and Subsection 3.4.5 sets up an experiment where the time
consumption for all forward passes is measured.

3.4.1 Baseline Performance of the SSD

In this experiment the Performance of the SSD is tested with different hyperparame-
ters on different datasets. The hyperparameters are: augmentations, batchnorm and
pretrained where pretrained describes a weight initialization of the VGG16 that has
been pretrained on ImageNet [DDS+09]. The datasets are KITTI, PASCAL VOC and
the Toy data set. Mean and standard deviation is reported. There were two main
goals of these experiments: a) set a baseline for the three main datasets to which the
later experiments can be compared to. b) Test the influence of the hyperparameters
to establish which parametrization of them was useful to reduce the number of
networks to train for the later experiments. It must be pointed out that the same
experiments but in smaller scale have been conducted for scattering methods to
prevent unfair comparisons. Whenever the parametrization differs it is pointed
out in the respective Section of the Results chapter. To test the effectiveness of
different hyperparameters a generalized linear model (GLM) with binomial model
family and logit link function was chosen. The model has all hyperparameters as
independent variables and accuracy as the dependent variable. The effectiveness of
a hyperparameter was evaluated along two metrics: a) whether the coefficient of the
GLM describing that particular parameter was positive, i.e. whether the parameter
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had a positive influence on the accuracy and b) the p-Value of the parameter in
the GLM. Even though there are many flaws with p-Values, especially with small
numbers of repetitions such as in this case, a p-Value smaller than 0.05 was used
to say that a variable has significant positive impact on the accuracy of the model.
However the p-Value will merely be reported as an indication for the readers intu-
ition. The parametrization of later experiments was decided according to the sign of
the coefficient because of all the problems with p-Values.

3.4.2 Sequential Scattering

The VGG part of the network was adapted by removing the first two filters and
max-pooling operations and replacing them by the scattering transform. The second
max-pooling operation needed to be removed since the output of the scattering
transform is of size 75x75 since J = 2 was chosen. The adapted VGG can be seen in
figure 3.9. All other parts of the network, i.e. the feature layers stay equivalent to the
basic SSD.
The experiments consisted of training a sequential scattering networks on all available
datasets, i.e. KITTI, PASCAL VOC, Toy data, scale toy data, rotation toy data,
deformation toy data and translation toy data with the hyperparametrization given
by the baseline experiments. Additionally, pretrained was tested for all combinations.
The results of pretrained might contain interesting information about the way in which
the scattering networks process their data in the context of a different representation
of the data. If the results of pretrained weights outperform the standard initialization
that could show that pretraining also learns concepts that are independent of the
representation of the data.

3.4.3 Parallel Scattering

The parallel scattering network was realized by forwarding every image through
the conventional pipe and two scattering networks. The first one had J = m = 1 and
the second had J = m = 2. They were merged with the normal forward pass after the
first and second max pooling operation respectively. The number of channels was
calculated as described in 2.9 and 2.10 and results in 27 and 243 channels for the first
and second scattering transformation respectively. A graphical interpretation of the
parallel hybrid network can be seen in figure 3.10.
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Figure 3.9: Sequantial scattering SSD. The first two filters are replaced by a scattering
transform with J = 2 and m = 1. This means the output has 3 · 17 = 51 output
channel.

The experiments consisted of training a parallel scattering networks on all available
datasets, i.e. Kitti, PASCAL VOC, Toy data, scale toy data, rotation toy data, defor-
mation toy data and translation toy data with the hyperparametrization given by
the baseline experiments. Additionally, pretrained was tested for all combinations.
The results of pretrained might contain interesting information about the way in
which the scattering networks process their data when confronted with another
representation of it. The batchnorm makes all results of the parallel scattering very
bad and is therefore turned off for the experiments.

3.4.4 Small Data Experiments

One of the possible advantages of filters that need no new training is that their
models converge faster and that they generalize better from small sample sizes.
Therefore an experiment was run for the toy dataset with only 600 samples for
training and 200 for testing. The networks only train 25k epochs instead of 100k. The
experiment was conducted for the standard SSD, the sequential scattering and the
parallel scattering network respectively. Each network was trained multiple times
to prevent outliers from determining the results too much. To test the convergence
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Figure 3.10: Parallel scattering SSD. The image is piped through the normal VGG path
and additionally through a scattering transform with J = 1 and m = 1 and a
second one with J = 2 and m = 2. The outputs of the scattering transforms are
concatenated with the other pipe as soon as the dimensions are compatible.

behavior on small datasets even further a second experiment with only 5k epochs
was run for all three network types. To compare the results in a more realistic setting
all three network types are also trained on the PASCAL VOC dataset with 25k and
5k epochs respectively.

3.4.5 Timing exeriments

Especially in object detection online usage of the network is an important goal. In
the context of self driving cars, for example, a network that is not able to process
data within a given period of time makes the network completely useless since the
car is unable to drive efficiently. The experiment will measure the average time of
n = 100 forward passes for the SSD, sequential and parallel scattering on a given
dataset. For this experiment every timing run will be on one GPU only since this is
the most likely use case for applications. The experiment is conducted on a GeForce
GTX 1080 Ti.
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4 Results

In this chapter the results of all experiments are presented. Every result is put into
perspective and discussed.
Section 4.1 shows the result of the classification experiments while Section 4.2 shows
the results of the object detection experiments with all subexperiments such as small
data experiments and timing experiments.

4.1 Classification

The network in combination with the scattering transform is able to classify all
test data correctly with 100 percent accuracy after two episodes of training before
it starts overfitting to the training data. In comparison, the network without the
scattering transform achieves 99.65 percent accuracy after four episodes before
it starts overfitting. This shows that the scattering transform is able to provide
useful information, at least when presented with simple datasets as shown in
Figure 3.8. Further implications like a slightly better accuracy or a slightly faster
convergence are potentially true, but cannot be concluded with high confidence
from this single observations. This experiment gets its relevance for this paper by
showing classification, a necessary condition for object detection, is fulfilled.

4.2 Object Detection

The results of the object detection experiments are presented in the following. First
the baselines of the standard approach are established in Subsection 4.2.1. Then the
experimental results of the sequential and parallel scattering approach are shown
and discussed in Subsection 4.2.2 and 4.2.3 respectively. Lastly, Subsections 4.2.5 and
4.2.6 show the results of the small data and timing experiments respectively.
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4.2.1 Baseline Performance of the SSD

In this section the results of all the main experiments are presented. First the baselines
that establish reasonable values for the use of batch norm and augmentations.
Additionally, the baselines for comparison with the hybrid networks are determined.
In the second subsection the results of the sequential scattering experiments are
presented while the third subsection shows those of the parallel approach.

Hyperparameterization and Baselines

The average and standard deviation (std) of a given combination of variables can be
found in Table 4.1. The coefficient of the GLM for augmentations are positive and it is
therefore used as a standard for future experiments. The p-value is 0.044 < 0.05 and
we can therefore say it has a significant positive effect on the training. The coefficient
for batch norm is also positive and is used in later experiments. Its p-value, however,
is 0.79 > 0.05 and therefore we cannot assume that it has a significant positive effect.
Pretraining on ImageNet has a positive coefficient as well but no significant p-value
with 0.41. Future experiments will still consider both possible values of pretrained
since interesting information about the network structure might be analyzed. On
average the combination of augmentations, no batchnorm and pretrained has the highest
mean accuracy for all datasets. For PASCAL VOC an accuracy of 0.630 is achieved,
for Kitti it is 0.125 and for the Toy data it is 0.792. These are the baselines to be
compared with the results of the scattering experiments. The standard deviations
show that the networks converge to somewhat similar functions even if their results
deviate by some noise. Given that outliers were removed prior to the GLM fitting
the standard deviations are only minor.

All results of the GLM can be found in the appendix in figure 6.4.

Invariant toy data

The results of the invariant toy data experiments with the standard architecture with
augmentations and batchnorm set to true can be found in Table 4.2. All experiments
have on average a slightly higher accuracy for the model without pretraining. This is
confirmed by the negative coefficient of the GLM that can be found in the appendix
in Figure 6.5. All other results of the GLM are in the same figure. This seems plausible
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Table 4.1: Results of the baseline experiments. Mean and standard deviation are denoted
for every combination of features that were measured. The results show that the
combination of augmentations and pretrained true and batchnorm false achieve
the highest accuracy in all cases.

Dataset Augmentations Batchnorm Pretrained Mean Std_dev

VOC 0 0 0 0.108 0.008
VOC 0 0 1 0.363 0.055
VOC 0 1 0 0.329 0.041
VOC 0 1 1 0.341 0.017
VOC 1 0 0 0.364 0.025
VOC 1 0 1 0.630 0.003
VOC 1 1 0 0.568 0.002
VOC 1 1 1 0.619 0.007
Kitti 0 0 0 0.027 0.024
Kitti 0 0 1 0.032 0.009
Kitti 0 1 0 0.032 0.010
Kitti 0 1 1 0.024 0.002
Kitti 1 0 0 0.050 0.010
Kitti 1 0 1 0.125 0.011
Kitti 1 1 0 0.116 0.012
Kitti 1 1 1 0.113 0.010
Toy_data 0 0 0 0.487 0.060
Toy_data 0 0 1 0.505 0.027
Toy_data 0 1 0 0.511 0.123
Toy_data 0 1 1 0.474 0.053
Toy_data 1 0 0 0.773 0.017
Toy_data 1 0 1 0.792 0.049
Toy_data 1 1 0 0.613 0.128
Toy_data 1 1 1 0.710 0.058

given that the invariances of geometric object have nothing to do with the patterns
learned on real life objects from ImageNet. The networks are able to recognize
objects with deformation with accuracy of 0.928. However the deformations are not
that big which might be the primary reason for that result. Rotation and scale have
and accuracy of 0.635 and 0.644 respectively. Translation has an accuracy of 0.002.
This could be explained either by overfitting on the training set or a impossibility
to generalize from the small number of training data. Overall it shows that the
possibility to generalize is rather limited for a standard SSD network trained on
a low number of training data points. All results of the GLM can be found in the
appendix in Figure 6.5.
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Table 4.2: Results of the invariant toy data experiments. Mean and standard deviation are
denoted for every combination of features that were measured. Pretraining on
ImageNet decreases the average accuracy slightly.

Dataset Pretrained Mean Std_dev

Deformation_data 0 0.928 0.003
Deformation_data 1 0.896 0.026
Rotation_data 0 0.635 0.010
Rotation_data 1 0.622 0.026
Translation_data 0 0.001 0.001
Translation_data 1 0.002 0.001
Scale_data 0 0.644 0.006
Scale_data 1 0.637 0.004

4.2.2 Sequential Scattering

The results of the sequential scattering experiments with augmentations and batchnorm
set true can be found in Table 4.3. Pretraining on ImageNet does not make a significant
difference for the resulting accuracy. The GLM in the appendix 6.6 even shows a
negative sign of the responding coefficient. Hypothetically the pretrained weights
could not only have learned the reoccurring contents of the images but also meaning
that is independent of the representation of the data. Given the results of the
experiments w.r.t. pretraining this hypotheses can not be supported.
The explicit comparison to both other techniques will be done in the Comparison
Subsection 4.2.4 but two important differences stand out. The first is the major
drop in accuracy of the PASCAL VOC dataset. While having 63 % accuracy was
reached with the standard SSD, only 43.2 % was reached with sequential scattering.
However, the standard setup was unable to identify objects after translation while
the sequential scattering setup is able to achieve 85.7 % accuracy thereby providing
evidence for the equivariance given by the Scattering Transform.

4.2.3 Parallel Scattering

The results for the parallel scattering experiments can be found in Table 4.4. Some of
the standard deviations for the parallel scattering experiments are 0. This is the case
because training the parallel network takes so much longer than the other networks
that it was not possible to reproduce the experiments as often as the others in this
paper. It can be seen that pretraining on ImageNet has a positive impact on the results.
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Table 4.3: Results of the sequential scattering experiments. Mean and standard deviation of
the accuracy are denoted for every combination of features that were measured.
Pretraining on ImageNet does not add any benefit.

Dataset Pretrained Mean Std_dev

VOC 0 0.399 0.004
VOC 1 0.432 0.038
Kitti 0 0.110 0.001
Kitti 1 0.077 0.003
Toy_data 0 0.831 0.000
Toy_data 1 0.818 0.001
Deformation_data 0 0.933 0.001
Deformation_data 1 0.929 0.001
Rotation_data 0 0.590 0.014
Rotation_data 1 0.659 0.059
Translation_data 0 0.857 0.000
Translation_data 1 0.767 0.127
Scale_data 0 0.646 0.000
Scale_data 1 0.641 0.003

This is also confirmed by the positive coefficient of the GLM that is reported in
the appendix 6.7. This also makes intuitive sense, given that much data is flowing
through the path of the standard network.
Patterns similar to the sequential scattering approach arise, i.e. the accuracy on
PASCAL VOC is significantly below the standard SSD but the drop of the translation
data in the standard approach is not existent in the parallel scattering setup.

4.2.4 Comparison of the Techniques

A final comparison between the best mean accuracies for all datasets and approaches
can be seen numerically in Table 4.5 and visually in Figure 4.1. There are three key
observations in the comparison. First, the results of the respective approaches differ
in only two of the seven datasets. This is a positive result because it means that
the Scattering Transform is a good alternative to the standard algorithms in object
detection in most circumstances. Second, they differ in the results for PASCAL VOC
where the standard approach outperforms both scattering approaches and they
differ in the exact inverse direction for translation data. The first result is potentially
due to the high background noise of natural images. The Scattering Transform
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Table 4.4: Results of the parallel scattering experiments. Mean and standard deviation of
the accuracy are denoted for every combination of features that were measured.
Pretraining on ImageNet does improve accuracy.

Dataset Pretrained Mean Std_dev

VOC 0 0.146 0.000
VOC 1 0.476 0.000
Kitti 0 0.042 0.000
Kitti 1 0.105 0.000
Toy_data 0 0.739 0.006
Toy_data 1 0.803 0.000
Deformation_data 0 0.900 0.000
Deformation_data 1 0.912 0.000
Rotation_data 0 0.684 0.007
Rotation_data 1 0.612 0.002
Translation_data 0 0.842 0.000
Translation_data 1 0.848 0.002
Scale_data 0 0.641 0.001
Scale_data 1 0.640 0.001

is essentially an edge detector and the noise might produce a lot of edges in the
scattering coefficients where none should be. This argument could also be used
against the KITTI dataset, where no such effect is seen. Another hypotheses is that
often objects in VOC images are behind each other or have high overlap, i.e. a
human rider on the back of a horse. This is not given to a similar extend for the
KITTI dataset. The Scattering Transform might have harder time to differentiate
foreground/background relations since it mostly works on edge detection. In the case
of translation data the standard approach is not general enough to learn the concept
of object translation. The Scattering Transform, in contrast, already naturally contains
prior knowledge in form of equivariance w.r.t. translation achieving significantly
better results then the standard approach. The third observation is the comparison
of the scattering techniques between each other. Figure 4.1 shows that the respective
lines of sequential and parallel scattering are nearly identical. This either means
that the concatenation of the scattering results introduces an upper bound to the
performance of the standard path or that the concatenation is done in a way in which
the scattering results dominate the normal pathway. The last possibility is more
likely in the context of this paper since the second concatenation of the scattering
transform merges 243 scattering filters with 128 feature maps from the standard
CNN path. At this point the information from the standard path ways might be
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ignored by later layers given their numerical minority. Future experiments could
contain a concatenation with less scattering filters.

Table 4.5: Comparison between the standard SSD, sequential scattering and parallel scat-
tering. For each method the best mean accuracy for all datasets is reported and
compared. The standard SSD outperforms both others on VOC. The inverse
happens in translation data.

Standard SSD Sequential Scattering Parallel Scattering

Kitti 0.125 0.110 0.1048
VOC 0.630 0.432 0.4760
Toy_data 0.792 0.831 0.8030
Deformation_data 0.928 0.933 0.9120
Rotation_data 0.635 0.659 0.6840
Translation_data 0.002 0.857 0.8480
Scale_data 0.644 0.646 0.6400

Figure 4.1: Comparison between the standard SSD, sequential scattering and parallel
scattering. For each method the best mean accuracy for all datasets is reported
and compared. The standard SSD outperforms both others on VOC. The inverse
happens in translation data.

4.2.5 Small Data Experiments

The results of the small data experiments can be found in table 4.6. On the small
toy dataset the sequential scattering outperforms both the standard and the parallel
scattering network significantly with 0.759 to 0.630 and 0.411 for 25k epochs and
0.121 to 0.043 and 0.003 for 5k epochs. In the case of the PASCAL VOC dataset
the standard SSD outperforms both others with 0.317 to 0.053 and 0.013 for 25k
epochs and 0.025 to 0.011 and 0.004 for 5k epochs. The conclusions from this are
twofold: a) The sequential scattering setup is useful in specific use cases while
having problems with very noisy and unstructured datasets such as VOC and b)
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The parallel scattering approach (at least with the setup used in this paper) does not
really yield the expected results. Instead of providing the best of both techniques the
parallel scattering gets outperformed on both datasets. All results of the GLM can be
found in the appendix in Figure 6.8.

Table 4.6: Results of the small data experiments. Mean and standard deviation of the
accuracy are denoted for every combination of features that were measured.

Dataset epochs network type Mean Std_dev

Toy_data_small 25k standard 0.630 0.008
Toy_data_small 25k sequential_scattering 0.759 0.004
Toy_data_small 25k parallel_scattering 0.411 0.012
Toy_data_small 5k standard 0.043 0.007
Toy_data_small 5k sequential_scattering 0.121 0.027
Toy_data_small 5k parallel_scattering 0.003 0.001
VOC 25k standard 0.317 0.011
VOC 25k sequential_scattering 0.053 0.006
VOC 25k parallel_scattering 0.013 0.001
VOC 5k standard 0.025 0.001
VOC 5k sequential_scattering 0.011 0.007
VOC 5k parallel_scattering 0.004 0.000

4.2.6 Timing Evaluation

The results of the timing evaluation can be found in Table 4.7. The sequential
scattering SSD setup is the fastest with an average of 0.178 seconds per forward
pass followed by the normal SSD setup with 0.236 seconds. Both are far ahead of
the parallel scattering setup with 1.499 seconds per forward pass. The standard
deviations are very small in all cases as a result of the deterministic nature of all three
methods. The timing is not compared to other network setups, i.e. a ResNet instead
of a VGG, since the scattering approach is easily transferable to other networks and
relative results are therefore the only relevant ones.
There are two conclusions to be drawn from these results. First, the sequential
scattering is slightly faster than the normal SSD and therefore could replace it in
specific niche tasks when both have the same accuracy. Second, the parallel scattering
approach is slower by a factor of 6-9 and is therefore only justified either when
time is no constraint (e.g. offline applications) or when the accuracy of the parallel
approach far outperforms the other two. The reason for the parallel approach taking
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so much longer than the other two is the calculation of second order coefficients. If
this is left out. This approach should only be marginally slower.

Table 4.7: Mean and standard deviation (std.) of 100 runs of the timing evaluation for the
normal SSD, the sequential and the parallel scattering SSD are shown. Means
are reported in seconds. The sequential scattering is faster than the standard
approach. Both are significantly faster than the parallel scattering.

network type mean std.

normal SSD 0.236 0.004
sequential scattering 0.178 0.004
parallel scattering 1.499 0.002
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5 Conclusion

This paper extended the Scattering Transform from classification to object detection.
To achieve this two techniques were used. The first is an extension of the hybrid
scattering networks used in [OBZ17] where a scattering network and a CNN are
combined sequentially. The second is a new technique introduced in this work where
the results from a scattering network are merged with a CNN architecture at different
stages. The evaluation of the new techniques was done on seven different datasets.
Two of which, PASCAL VOC and KITTI, show real world image scenarios. The other
five, Toy_data, Deformation_data, Rotation_data, Translation_data and Scale_data,
are created just for this work to test performance on images who contain objects with
specific properties. Besides the experiments on these datasets the techniques are also
tested on very small datasets with very low number of training epochs. Lastly their
forward pass is timed and compared to see whether the static nature of the filter
yields significant decrease in training time.
The results of all those experiments yield many conclusions. The first conclusions can
be seen when looking at Figure 4.1 in the comparison Subsection 4.2.4. It shows that
both scattering approaches match the performance of the standard approach in five
out of seven cases, underperform in one and overperform in the other. This is likely
due to the scattering transform handling geometric properties or transformations of
objects better than the standard approach but having difficulties with objects in high
noise environments such as real world datasets outside of controlled environments.
When looking at the results of the small data experiments one can see that the
sequential scattering approach outperforms the standard and parallel scattering
approach for the toy data but both scattering architectures get beaten by the standard
architecture for the PASCAL VOC datasets. This again indicates that the sequential
scattering approach has an advantage for small datasets and short training times
when using data that contain objects with some geometric properties.
When comparing the timing, the sequential scattering is faster than the standard
approach by taking only 75% as long per forward pass. The parallel scattering
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approach is significantly slower while not adding any additional accuracy.
Overall this leads to two clear conclusions. First, the parallel scattering approach as
described in this paper is in no way better than any of the other two and therefore
needs to be part of future research before being used for applications. Second, the
sequential scattering approach is neither strictly better than the standard approach
nor should it be applied in all cases. However, in some applications it might provide
significantly more accurate and more robust results. When the data does not contain
much natural noise and has certain geometric patterns the sequential scattering
is likely better than the standard approach. Especially when only few data are
available sequential scattering is more optimal. This is further amplified in scenarios
in which time is a key bottleneck because the time for a forward pass is lower for the
sequential scattering approaches. Scenarios where these properties are given could
include images of rare diseases since few images exist or object recognition on text
because of the clear shapes of characters.

5.1 Future Outlook

Given the just presented conclusion there are two main avenues for future work.
First, additional experiments which support the strength of the scattering transform
should be conducted. These could entail training on very small dataset from real
applications instead of just creating toy data such as in this paper or finding other
use cases that fulfill the specific advantages of the scattering transform, i.e. low noise
environments and clear geometric properties of the shapes. The second avenue is
an investigation of other ways to set up the parallel scattering network. The setup
chosen in this paper is too time consuming and does not achieve a justifiable accuracy
compared to the other presented methods. A first step could be to not use the second
order scattering coefficients but only first order coefficients instead.
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6 Appendix

Additional material for explanations and results can be found here. There is also a
section of parameters and methods that were tried but did not yield positive results.
This is done such that other scientist that want to research this or related problems
do not need to waste time.

6.1 Negative Results

1. Given that the aspect ratio of the images from the KITTI dataset are 3:1 we set
up an SSD with input size 1000x300 and adapted the feature sizes accordingly.
However, the results were comparable to or worse than the 300x300 version
but took longer to compute and was therefore discarded.

2. The values called s_sizes in the hyperparameters Subsection 3.2.2 are calculated
according to a minimum value of 0.2 and maximum value of 0.9 with a linear
interpolation in between. We changed these values to 0.1 and 0.95 and other
combinations. Non of them were more successful than the default ones.

6.2 Explanations of the Scattering Transform

Figure 6.1 shows a translated version of the image found in section 2.3.3.
Figure 6.2 shows the scattering coefficients of another object, in this case an ellipse,
to see the properties of rounded edges.
Figure 6.3 shows a scaled version of 6.2.

6.3 Results
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(a) (b)

(c) (d)

Figure 6.1: Image taken from a toy dataset created for this work. a) Original image; b)
0th order scattering coefficients, i.e. a Gaussian low-pass filter; c) First order
scattering coefficients; d) Second order scattering coefficients
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(a) (b)

(c) (d)

Figure 6.2: Image taken from a toy dataset created for this work. a) Original image; b)
0th order scattering coefficients, i.e. a Gaussian low-pass filter; c) First order
scattering coefficients; d) Second order scattering coefficients
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(a) (b)

(c) (d)

Figure 6.3: Image taken from a toy dataset created for this work. a) Original image; b)
0th order scattering coefficients, i.e. a Gaussian low-pass filter; c) First order
scattering coefficients; d) Second order scattering coefficients
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Dep. Variable: Accuracy No. Observations: 88
Model: GLM Df Residuals: 82
Model Family: Binomial Df Model: 5
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -29.873
Date: Wed, 12 Jun 2019 Deviance: 2.4687
Time: 16:47:27 Pearson chi2: 2.45

coef std err z P>|z| [0.025 0.975]

Intercept -1.2916 0.447 -2.892 0.004 -2.167 -0.416
VOC 0.1038 0.369 0.282 0.778 -0.619 0.826
Toy_data 0.9542 0.394 2.420 0.016 0.182 1.727
Kitti -2.3497 0.617 -3.811 0.000 -3.558 -1.141
Augmentations 1.0703 0.530 2.018 0.044 0.031 2.110
Batchnorm 0.1368 0.525 0.261 0.794 -0.892 1.166
Pretrained 0.4302 0.527 0.817 0.414 -0.602 1.463

Figure 6.4: GLM for the baseline experiments. Positive coefficients imply a better accuracy.
P-values below 0.05 are significant.

Dep. Variable: Accuracy No. Observations: 42
Model: GLM Df Residuals: 37
Model Family: Binomial Df Model: 4
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -11.790
Date: Wed, 12 Jun 2019 Deviance: 0.086250
Time: 16:46:44 Pearson chi2: 0.0930

coef std err z P>|z| [0.025 0.975]

Intercept -0.5830 1.724 -0.338 0.735 -3.962 2.796
Deformation_data 2.9682 1.903 1.560 0.119 -0.761 6.697
Rotation_data 1.1550 1.756 0.658 0.511 -2.287 4.597
Scale_data 1.2074 1.770 0.682 0.495 -2.261 4.676
Translation_data -5.9137 6.678 -0.886 0.376 -19.002 7.175
Pretrained -0.0920 0.822 -0.112 0.911 -1.704 1.520

Figure 6.5: GLM for the baseline invariant experiments. Positive coefficients imply a better
accuracy. P-values below 0.05 are significant.
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Dep. Variable: Accuracy No. Observations: 40
Model: GLM Df Residuals: 32
Model Family: Binomial Df Model: 7
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -13.468
Date: Fri, 14 Jun 2019 Deviance: 0.45398
Time: 16:16:06 Pearson chi2: 0.504

coef std err z P>|z| [0.025 0.975]

Intercept 0.5339 0.515 1.037 0.300 -0.475 1.543
VOC -0.8504 0.959 -0.887 0.375 -2.729 1.029
Kitti -2.7801 1.273 -2.184 0.029 -5.275 -0.285
Toy_data 1.0364 1.005 1.031 0.303 -0.934 3.007
Deformation_data 2.0923 1.446 1.447 0.148 -0.742 4.927
Rotation_data 0.0003 0.825 0.000 1.000 -1.616 1.617
Scale_data 0.0821 0.832 0.099 0.921 -1.549 1.713
Translation_data 0.9533 0.983 0.970 0.332 -0.973 2.880
Pretrained -0.0502 0.789 -0.064 0.949 -1.596 1.495

Figure 6.6: GLM for the sequential scattering experiments. Positive coefficients imply a
better accuracy. P-values below 0.05 are significant.

Dep. Variable: Accuracy No. Observations: 23
Model: GLM Df Residuals: 15
Model Family: Binomial Df Model: 7
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -8.0343
Date: Mon, 17 Jun 2019 Deviance: 0.30082
Time: 18:08:03 Pearson chi2: 0.291

coef std err z P>|z| [0.025 0.975]

Intercept 0.2852 0.715 0.399 0.690 -1.116 1.686
VOC -1.1895 1.435 -0.829 0.407 -4.003 1.624
Kitti -2.9350 2.418 -1.214 0.225 -7.674 1.803
Toy_data 0.8272 1.169 0.708 0.479 -1.463 3.118
Deformation_data 1.8665 1.824 1.023 0.306 -1.708 5.441
Rotation_data 0.2194 1.061 0.207 0.836 -1.860 2.299
Scale_data 0.1882 1.057 0.178 0.859 -1.884 2.261
Translation_data 1.3084 1.317 0.994 0.320 -1.272 3.889
Pretrained 0.2116 1.020 0.207 0.836 -1.787 2.211

Figure 6.7: GLM for the parallel scattering experiments. Positive coefficients imply a better
accuracy. P-values below 0.05 are significant.

64 6.3. RESULTS



6 CHAPTER 6. APPENDIX

Dep. Variable: Accuracy No. Observations: 36
Model: GLM Df Residuals: 31
Model Family: Binomial Df Model: 4
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -8.0310
Date: Wed, 12 Jun 2019 Deviance: 1.3209
Time: 16:43:30 Pearson chi2: 1.27

coef std err z P>|z| [0.025 0.975]

Intercept -1.0483 0.356 -2.947 0.003 -1.745 -0.351
Toy_data_small 0.6860 0.549 1.250 0.211 -0.390 1.762
VOC -1.7343 0.706 -2.457 0.014 -3.118 -0.351
twentyfivek 1.1156 0.637 1.751 0.080 -0.133 2.364
fivek -2.1638 0.881 -2.457 0.014 -3.890 -0.437
standard 0.2188 0.735 0.298 0.766 -1.222 1.660
sequential_scattering 0.0583 0.740 0.079 0.937 -1.392 1.509
parallel_scattering -1.3253 0.887 -1.494 0.135 -3.064 0.413

Figure 6.8: GLM for the small data experiments. Positive coefficients imply a better accuracy.
P-values below 0.05 are significant.
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